Association of Blood Group Antigen Secretor StatusAnd Diseases of The Gastrointestinal Tract

Santosh TV¹Sivaprasad P V M¹Sithara M S¹.Swetha P Rajan¹Terence B Culas²

1 Department Of Surgery, Government Medical College, Thrissur 2 Government Medical College, Palakkad

Abstract: Approximately 80% of the population secrete their blood group antigens in their saliva and other body fluids while others do not. These antigens in the digestive secretions have an association with the development of the diseases of the gastrointestinal tract.

In this context, we did a case control study to test if there is any association between the blood antigen secretor status and the development of various gastrointestinal diseases. We studied 178 people (92 males and 86 females) with various GI symptoms attended to Government Medical College, Trissur. The sample contained people of age ranging from 18-85. We found the disease statuses of individuals using endoscopy (esophagogastroduodenoscopy and colonoscopy), biopsy and histopathological examination. Weanalyzed the results using Pearson chi square test. In conclusion we found no statistically significant association between secretor status and gastro intestinal diseases.

Keywords: blood group antigen, secretor, gastro-intestinal diseases.

I. Introduction

In 1900 Karl Landsteiner described ABO blood grouping system for which he was awarded the Nobel Prize (1)(2). Since 1930, people are classified into secretors and non secretors depending upon their ability to secrete their blood group antigens in their saliva and other body fluids(3). Interest in the association between gastro intestinal diseases and ABO group started with the discovery that blood group A secretors have a higher incidence of gastric cancer(4) and non-secretors are susceptible to an array of other gastrointestinal diseases such as peptic ulcer(5)(6).

80 % of the population are secretors who secrete their blood group antigen in saliva (7). Secretor status is determined by genetics, by the presence or absence of gene FUT2 on chromosome 19q13.3. About 20% of population lacks the so called secretor gene and thus cannot manufacture free unbound blood type antigens. These individuals are called non-secretors. Non-secretors have high incidence of diseases of mouth, esophageal cancer, epithelial dysplasia as compared to secretors(8). Non secretors often have more problems with low level infection such as candida and streptococcus. Non secretors are also known to be more prone to many forms of autoimmune diseases, such as crohns (9). Some researches indicate that non secretors have a lower rate of development of gastrointestinal cancers (10).

A study about the development of these diseases in secretors and non-secretors of the population of Indian subcontinent was lacking the literature. In this background, we conducted a case control study to find out the association between blood groups and the secretor status with the various benign and malignant diseases of the gastrointestinal tract.

II. Materials And Methods

We studied a total of 178 patients who attended the surgery outpatient department, Government medical college, Trissur in the state of Kerala, India with symptoms attributable to diseases of gastrointestinal system. They were subjected to upper gastrointestinal endoscopy or lower gastrointestinal endoscopy depending upon their symptoms and were biopsied and subjected to histopathological examination. Those patients were then divided into

- 1. Cases- the patients with a proven benign or malignant disease
- 2. Controls- the patients who are proved to have no GI pathology

Subsequently their antigen secretor status was identified using internationally accepted agglutination reaction in the saliva, which was done as follows. 2-3 ml saliva of each patient were collected into a test tube and stored frozen at 0'cuntil sample analysis. For analysis, samples were incubated in a 100'c water-bath for 10 min to inactivate enzymes. They were centrifuged for 3000 rpm for 5 minutes. 3 test tubes were labeled for saliva and 3 for normal saline. One drop of dilute anti-serum (Tulip Diagnostics Pvt Ltd., India) was added to each test tube. One drop of saliva was added to the tests and to controls one drop of saline was added. Then we added one drop of appropriate red cells to each tube. Agglutination was read with naked eye and microscope.

DOI: 10.9790/0853-151202102104 www.iosrjournals.org 102 | Page

Blood groups were also determined using routine agglutination method. The results were analyzed statistically with Pearson chi-square test (software).

Results And Analysis

Out of total 178 patients we studied, there are total 92 males and 86 females.

Males	Females	
92	86	

Age groups and blood group distribution were as follows.

AGE GROUPS	
1. 0-203	
2. 21-40	
30	
3. 41-60	
93	
4. 61-80	
50	
5. 81-100	
2	

Most of the subjects were elderly (41-60) followed by very elderly (61-80). Extremes of age constituted only a very small number.

Blood Groups	
A	37
В	59
0	69
Ab	13

Blood group distribution in the sample was in accordance with the statistics elsewhere. Most subjects where of group 0 followed by group B, then group A and least AB.

Of the total 178, 135 were found to be secretors and 43 were non secretors.

Secretor	Non-Secretors		
	135	43	

Disease distribution is as follows.

Disease Distribution							
	Benign Malignant						
Oesophagus	OesophagusstomachsmallIntestinelargeIntestineoesophagusstomachsmallIntestinelarge Intestine						
1	21	2	5	2	8	0	5

Benign diseases of the stomach including acute and chronic gastritis and malignancy (adenocarcinoma) constituted the majority followed by benign and malignant diseases of large intestine (diverticular diseases and adenocarcinoma respectively). Peptic ulcer diseases, oesophagitis and carcinoma esophagus constituted a minor number.

III. Data Analysis

Secretor Status And Diseases

ila Discuses			
	Secretor	Non secretors	P value
Disease	31	13	0.926
Normal	104	30	
Benign	20	9	0.322
Normal	104	30	

Malignant 0.708	11	4
Normal	104	30
Benign	20	9
0.763		
Malignant	11	4

We studied the association between the total diseases, benign diseases and malignant diseases with secretor status. All the p values were more than 0.05.

IV. Discussion

There are no data available regarding the secretor status of population of Kerala, India. Our study is the first attempt at describing the prevalence of secretors and non-secretors in the state of Kerala, India. Our results approximate to the prevalence described in other populations. The secretor status in Kerala does not appear to differ from what has been described elsewhere.

A case control study and meta-analysis by Zhiwei Wang et al says that there is significant risk of gastric cancer in A group than in non-A groups. It also says thatO group has a reduced risk of gastric cancer than non-O groups(11). According to the study by R.Doll, H.Drane and A.C.Newell, secretion of blood group substances has an association with duodenal, gastric and stomal ulcers, gastric carcinoma and diabetes whereas non-secretion of antigens has an association with peptic ulcer disease.(12)

However in our study we found no association between blood antigen secretor status and diseases of GI tract. The reasons for that may be assumed to be various environmental and dietary differences in the study population or differences between ethnic groups.

V. Conclusion

Despite the fact that many studies continue to suggest that there is an association between blood antigen secretor status and gastrointestinal disease, no statistically significant association was found in our study.

VI. Limitation

A control group of persons with no symptoms, with analysis of the spread of secretor vs. non-secretor status in this group, is lacking. So these results warrant further studies by including such a group.

VII Acknowledgement

The authors acknowledge the encouragement and financial support given to them by the Institutional Research Committee of Government Medical College , Thrissur.

References

- [1]. Landsteiner K (1900). "ZurKenntnis der antifermentativen, lytischen und agglutinierendenWirkungen des Blutserums und der Lymphe". ZentralblattBakteriologie27: 357–62.
- [2]. Herny V. Historical review. Br J Haematol. 2000;110(1):758–767. [PubMed]
- [3]. nt J Nanomedicine. 2010; 5: 901–905. Published online 2010 Nov 2. doi: 10.2147/JJN.S13980PMCID: PMC2990383Higher frequency of secretor phenotype in O blood group its benefits in prevention and/or treatment of some diseasesMohamadSalihJaff.
- [4]. A relationship between cancer of stomach and the ABO blood groups.AIRD I, BENTALL HH, ROBERTS JABr Med J. 1953 Apr 11; 1(4814):799-801
- [5]. The role of ABO blood groups and secretor status in host defences.C.C. BlackwellArticle first published online: 27 MAR 2006DOI: 10.1111/j.1574-6968.1989.tb02419.x
- [6]. Campi C, Escovich L, Moren A, Racca L, Racca A, Cotoruelo C, et al. Expression of the gene encoding secretor type galactoside 2-α-L-Fucosyltransferase (FUT2) and ABH antigens in patients with oral lesions. Med Oral Patol Oral Cir Bucal. 2012;17(1):63–68.
- [7]. Proc Natl AcadSci U S A. 1984 Jul; 81(13): 4193–4197. PMCID: PMC345395Biochemical evidence that secretor gene, Se, is a structural gene encoding a specific fucosyltransferase.TKumazaki and A Yoshida.
- [8]. J Indian Acad Forensic Med. April-June 2015, Vol. 37, No. 2Original Research PaperSecretors in Manipuri Population: A Study. A. Sylvia Devi, Th. Meera, Kh. Pradipkumar Singh, H. Nabachandra, Ibungo ShahArticle in Human Molecular Genetics. September 2010 DOI:10.1093/hmg/ddq248.source.Pubmed
- [9]. Haematologia (Budap). 1986;19(2):147-50 Frequency of non-secretor types amng stomach cancer patients. Csato E, Vass J.
- [10]. Int.J.Mol.Sci 2012, 13, 13308-13321,doi:10.3390/ijms131013308 ABO Blood Group System and gastric cancer: A case control study and Meta-AnalysisZhiwei Wang, Lei Liu, Jun Ji, Jianian Zhang, Min Yan, Jun Zhang, Bingya Liu, ZhenggangZhu and Yingyan Yu
- [11]. Journal List >Gut>v.2(4); 1961 Dec> PMC1413369R.Doll, H.DraneAnda.C.Newell, secretion of blood group substances in duodenal, gastric and stomal ulcer, gastric carcinoma and dibetes mellitus